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Robust control via the computation of
permuted graph bases

Volker Mehrmann∗ Federico Poloni†

08.06.12

We present a new numerical method for the γ-iteration in robust control
based on the extended matrix pencil formulation of [6]. The new method
bases the γ iteration on the computation of special subspaces associated
with matrix pencils. We introduce a permuted graph representation of these
subspaces, which avoids the known difficulties that arise when the iteration
is based on the solution of algebraic Riccati equations but at the same time
makes use of the special symmetry structures that are present in the problems.
We show that the new method is applicable in many situations where the
conventional methods fail.

1 Introduction
The optimal infinite-horizon output (or measurement) feedback H∞ control problem
is one of the central tasks in robust control, see, e. g., [19, 31, 39, 40]. Despite recent
developments [6, 4, 14, 15, 16, 20, 25, 32, 36, 38] some of which are incorporated into
software libraries like SLICOT1 [8, 9, 21] or the Matlab Robust Control Toolbox [2],
the development of robust numerical methods for the H∞ control remains a problem [12].
Consider the linear dynamical system

ẋ = Ax+B1w +B2u, x(t0) = x0,

z = C1x+D11w +D12u, (1)
y = C2x+D21w +D22u,
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where A ∈ Rn×n, Bi ∈ Rn×mi , Ci ∈ Rpi,n, Dij ∈ Rmi,pj , with p1 ≥ m2 and m1 ≥ p2.
Here, x(t), u(t) and y(t) are state, input and output vectors respectively, w(t) is an
additional input term representing noise and errors in the modeled dynamics, and z is an
estimation error.
The optimal infinite-horizon H∞ control problem [6, 19, 40] consists in designing

a controller for (1) such that the closed-loop system minimizes the magnitude of the
response z(t) with respect to the disturbance w(t) in the worst case. Mathematically,
one achieves the desired design goal of stabilizing the system and using the freedom
in the design to minimize the influence of the disturbance in the transfer function Tzw
from w to z in the H∞ norm ‖Tzw‖∞ := supω∈R σmax[Tzw(iω)], where σmax denotes the
maximum singular value.
In the following we study problems with real coefficient matrices, however, all the

results can be formulated in a similar way for complex matrices. Following [6], we shall
make the following assumptions.

A1 (A,B2) is stabilizable and (A,C2) is detectable, i. e., rank[sI −A,B2] = rank[sI −
AT , CT2 ] = n for all s ∈ C with nonnegative real part;

A2 D22 = 0, and D12, D21 have full rank;

A3 for each ω ∈ R,
[
A− iωI B2
C1 D12

]
has full column rank and

[
A− iωI B1
C2 D21

]
has full

row rank.

When these assumptions hold, then the following theorem presents a method to estimate
the H∞ norm, see [6, 19, 40].

Criteria Theorem 1. Consider system (1) satisfying assumptions A1–A3. Then for a fixed
γ > 0, there exists an internally stabilizing controller with ‖Tzw‖∞ < γ if and only if the
following conditions hold.

1. The value γ satisfies γ > max(γ̂H , γ̂J), where γ̂H , γ̂J are the largest real values
such that

RH(γ̂H) =
[
DT

11
DT

12

] [
D11 D12

]
−
[
γ̂2
HIm1 0

0 0

]
,

RJ(γ̂J) =
[
D11
D21

] [
DT

11 DT
21

]
−
[
γ̂2
JIp1 0
0 0

]
,

respectively, are nonsingular (they are well-defined under our assumptions).

2. There exist positive semidefinite solutions XH(γ), XJ(γ) to the algebraic Riccati
equations

0 = H11XH +XHH
T
11 +H21 −XHH12XH ,

0 = J11XJ +XJJ
T
11 + J21 −XJH12XJ (2)
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associated with the Hamiltonian matrices

H(γ) =
[
H11 H12
H21 −HT

11

]

:=
[

A 0
−CT1 C1 −AT

]
−
[

B1 B2
−CT1 D11 −CT1 D12

]
R−1
H (γ)

[
DT

11C1 BT
1

DT
12C1 BT

2

]
,

J(γ) =
[
J11 J12
J21 −JT11

]
(3)

:=
[

AT 0
−B1B

T
1 −A

]
−
[

CT1 CT2
−B1D

T
11 −B1D

T
21

]
R−1
J (γ)

[
D11B

T
1 C1

D21B
T
1 C2

]
.

3. If by ρ(·) we denote the spectral radius of a matrix, then ρ(XHXJ) < γ2,.

Theorem 1 provides computationally feasible criteria to decide whether a value γ
is smaller or larger than the optimal γ value γopt = ‖Tzw‖∞ and one can then use a
bisection process to determine γopt. However, as such a process approaches γopt, the
failure of one of these conditions often means that either one of the two Riccati equations
becomes exceedingly ill-conditioned as it approaches a non-solvable one, or one of the
matrices RH , RJ becomes singular. Therefore, recently, different numerical methods
have been designed [4, 6, 25] which avoid the formation of the Hamiltonian matrices and
the solution of the Riccati equations by computing special deflating subspaces for certain
matrix pencils. We will briefly recall this approach in Section 2.

Despite the described difficulties, the approach via the solution of Riccati equations is
still quite popular, in particular, because the symmetry and definiteness of the solutions
can be nicely monitored and allows for low-rank representations [7, 18]. To achieve a
compromise between these nice properties and the avoidance of ill-conditioning, recently,
in [30] a variation of the structured doubling algorithm (SDA), which was originally
introduced in [13] for the solution of algebraic Riccati equations, has been presented that
achieves improved stability and robustness by using a new representation of the relevant
Lagrangian invariant subspaces of the Hamiltonian matrices in (3) which at the same
time retains the Riccati solution properties. In this paper, we extend these ideas and
adapt them to produce a robust implementation of the γ-iteration for H∞ control. This
requires, in particular, a nontrivial extension of the theory in [30] to deal with extended
Lagrangian pencils, and turning the main iteration into a different form, which is not a
variant of SDA but rather a version of the inverse-free sign iteration [3].

The paper is organized as follows. In Section 2 we recall some basic facts about
algebraic Riccati equations, even pencils and Lagrangian subspaces and in Section 3
we introduce permutated graph bases of deflating subspaces of matrix pencils. We
then consider structured versions of these graph bases for Lagrangian subspaces and
Hamiltonian pencils in Section 4, and we extend them to a more general structure (called
partial Lagrangian) in Section 5. In Section 6 we show how this approach applies to
some special even pencils, and show how to extract a suitable Hamiltonian subpencil.
In Section 7 we introduce the algorithm that we use to compute their stable deflating
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subspaces, and in Section 8 we describe the full γ iteration in this setting. Successively,
we present in Section 9 an analysis of why a similar algorithm, the doubling algorithm,
leads to a lower accuracy in the solution of our primary benchmark example. Finally,
conclusions are presented.

2 Algebraic Riccati equations and even pencils
sec:algric

Algebraic Riccati equations are a classic tool in almost all areas of control theory. They
allow for a nice and simple formulation of several results, but using them in numerical
solution methods may be problematic because their solutions may be highly ill-conditioned
even though the problem to be solved is well-conditioned. This is the case in particular
for the γ-iteration, where frequently near the optimal γ the solution of one the two
Riccati equations in (2) becomes unbounded. Therefore, at least for small-scale dense
problems, it is nowadays common numerical practice to replace the computation of the
solutions to the Riccati equation by the computation of Lagrangian invariant subspaces
for the Hamiltonian matrices in (3), by exploiting the following well-known result, see
e. g. [29], formulated for H(γ), with an obvious analogue for J(γ).

riclag Lemma 2. The algebraic Riccati equation with Hamiltonian matrix H(γ) has a sym-

metric positive semidefinite solution XH(γ) if and only if
[

I
XH(γ)

]
is the Lagrangian

(semi-)stable invariant subspace of H(γ).

Here we call an invariant subspace (semi-)stable if it is associated with the eigenvalues
in the (closed) left half plane. An n-dimensional subspace of U ⊂ R2n is called Lagrangian
if uTJ2nv = 0 for all u, v ∈ U , where

J2n :=
[

0 In
−In 0

]
.

It is an interesting observation that we do not actually need XH and XJ to verify the
last two conditions of Theorem 1, but rather only a basis for the invariant subspace.

Theorem 3. [6] Consider the Hamiltonian matrices (3) and associated LagrangianthmY
invariant subspaces [

YH
ZH

]
,

[
YJ
ZJ

]
, (4) invsubs

with all blocks in Rn,n.

1. There exist symmetric matrices XH , XJ such that[
In
XH

]
,

[
In
XJ

]

span the same invariant subspaces as (4) (respectively) if and only if YH , YJ are
invertible. In this case, XH = ZHY

−1
H and XJ = ZJY

−1
J are symmetric solutions
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of (2). Furthermore, these are positive semidefinite if and only if the Lagrangian
invariant subspaces are semistable.

2. Consider the matrix
Y(γ) =

[
γY T

HZH Y T
H YJ

Y T
J YH γY T

J ZJ

]
, (5) mathcalY

constructed from the stable invariant subspaces of (3) partitioned as in (4) (thus all
matrices depend implicitly on γ). Then, Y(γ) is positive semidefinite with constant
rank r = rankY(γ) for all γ > ‖Tzw‖∞. Conversely, if γ < ‖Tzw‖∞, then either
rankY(γ) < r or Y(γ) is not positive semidefinite.

Theorem 3 implies that we can express the process of checking whether γ is larger or
smaller than γopt in terms of the invariant subspaces and avoid computing the (possibly
ill-conditioned) Riccati solutions.
Another problem arises if the γ values are such that the matrices RH and RJ are

singular or close to singular. If one of them is singular then γ ≤ γopt, but if one of the
two matrices is close to singular, then not even the Hamiltonian matrices H(γ) or J(γ),
respectively, should be formed. However, as has been shown in [4, 6, 25], then another
formulation of the problem can be used to avoid inverting these matrices. This approach
has the further advantage that it works with the original data of the problem.

Lemma 4. Consider the optimal H∞ control problem with data as in (1). Then the
matrices XH(γ), XJ(γ) are the stabilizing solutions of the algebraic Riccati equations (2)
if and only if 

XH

I
∗
∗
∗

 ,

XJ

I
∗
∗
∗

 , (6) graphForm

(for some suitable unspecified matrices denoted by ∗) are n-dimensional stabilizing deflating
subspaces of the matrix pencils

λE − AH = λ


0 In 0 0 0
−In 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 −AT 0 0 −CT1
−A 0 B1 B2 0
0 BT

1 γ2Im1 0 DT
11

0 BT
2 0 0 DT

12
−C1 0 D11 D12 Ip1

 ,

λE − AJ = λ


0 In 0 0 0
−In 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 −A 0 0 −B1
−AT 0 CT1 CT2 0

0 C1 γ2Ip1 0 D11
0 C2 0 0 D21
−BT

1 0 DT
11 DT

21 Im1

 . (7)

The two pencils in (7) are so called even pencils, see [27], i. e., E is skew-symmetric
and A is symmetric. To guarantee numerical accuracy, in particular in the neighborhood
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of the optimal γ, the invariant subspaces should be computed using an algorithm that
preserves this even structure exactly [5], since it is well-known that the condition number
of the problem with respect to structure-preserving perturbations can be much lower
than the unstructured one [10].

It is interesting to point out that the even structure is more general than the Hamiltonian
structure. The main properties of interest in the context of optimal control problems
associated to the Hamiltonian structure are that the eigenvalues are paired, that is,
whenever λ is an eigenvalue, then also −λ̄ is an eigenvalue. Moreover, if there are
no purely imaginary eigenvalues, then the stable and unstable invariant subspaces are
Lagrangian, i. e., n-dimensional and the Riccati solutions (if they exist) are symmetric.
Even pencils also have the symmetry of the finite spectrum, but they may have odd

dimension, and due to possible Kronecker blocks associated with the infinite eigenvalues,
even if there are no purely imaginary eigenvalues, then the dimension of the deflating
subspace may be less than n-dimensional. In addition, the deflating subspace need not
be Lagrangian and the matrix X resulting from a graph basis as in (6) may not be
symmetric. However, it is known, see [26] and in an even more general context of control
problems with variable coefficients [24] that one can make a change of variables to obtain
a Hamiltonian substructure in each even pencil and that with respect to this substructure
the same properties hold. In particular, if an even pencil of the form (7) is regular and of
index at most one then there exists a 2n× 2n Hamiltonian subproblem. We will exploit
this fact in the following sections when computing the appropriate deflating subspaces.
Note that a pencil sE − A is called regular if it is square and det(sE − A) does not
vanish identically for all complex numbers s. A regular pencil has index at most one if
the Kronecker blocks associated with the eigenvalue ∞ have size at most one.

3 Permuted graph bases of (unstructured) subspaces and
pencils

sec:unstructuredPGB
In this section we recall the concept of permuted Lagrangian graph bases of [30] for the
use in even pencils. In the following, we say that U ∈ RM+N,N is a basis matrix for an
N -dimensional subspace U ⊆ RM+N if imU = U and kerU = {0}.
Consider the following problem.

ProblemPGB Problem 1 (Bounded permuted graph basis). Given U ∈ RM+N,N , with M ≥ N , and a
real number T ≥ 1 (which represents a threshold), find X = [xi,j ] ∈ RM,N , an invertible
Y ∈ RM,N , and a permutation matrix Π ∈ RM+N,M+N such that

ΠU =
[
I
X

]
Y, and |xi,j | ≤ T for all i, j. (8) PGB

It has been shown in [30] that for any U ∈ RM+N,N and T ≥ 1, a solution to Problem 1
exists. Furthermore, if T > 1, then a solution can be computed in O((M +N)3 logT (M +
N)) floating point operations. The basic structure of the algorithm suggested in [30] is
as follows:
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A first guess for Π is obtained via a QRP factorization of UT , see e. g. [17]. If the
resulting X does not satisfy the threshold property, then it is improved iteratively via a
sequence of rank one updates. One can prove that at most O((M +N) logT (M +N))
updates, each costing O((M +N)2) floating point operations, are sufficient to get the
threshold bound, but in most cases only very few steps, or none at all, are needed in
practice.

Given a matrix U , if we are only interested in its column space U = imU , then we can
replace U with

Û = ΠT

[
I
X

]
. (9) defUhat

In other words, every subspace U admits a basis matrix Û ∈ RM+N,N such that the
identity matrix IN is a submatrix of Û , obtained by taking a suitable (ordered) subset of
its rows, and all the other entries of Û are bounded in modulus by T .
This special basis is well-conditioned, and can be stably computed from any other

basis, in the following sense. Let κ(A) := σmax(A)/σmin(A) denote the spectral norm
condition number of A, which is defined also for rectangular matrices, where σmax(A)
and σmin(A) denote the maximal and minimal singular value of A, see [17].

stability Theorem 5 ([30]). For every matrix U ∈ RM+N , for any Π,X satisfying (8) and Û as
in (9) we have the following condition estimates.

• κ(Y ) ≤ κ(U)
√
MNT 2 + 1, where Y ∈ RN×N is the basis change matrix, i. e.,

U = ÛY

• κ(Û) ≤
√
MNT 2 + 1.

If one would use an orthogonal basis of U in place of Û , then one would get the same
bounds without the factor

√
MNT 2 + 1. In particular, the κ(U) in the first bound cannot

be avoided, as it represents the conditioning of the column space of the initial basis
matrix U .
The permuted graph representation can be viewed as a sparse representation of the

subspace, since it has much more zeroes than the generic orthogonal representation and
if the matrix X can furthermore be approximated by a low rank factorization. This
representation is truly sparse in comparison with an orthogonal representation, without
losing much in the conditioning of the subspace, a fact that can be exploited for large
scale problems.

It is remarkable that Theorem 5 can also be used to generate different representations
of matrix pencils. We say that two pencils sE1 −A1, sE2 −A2, with Ei, Ai ∈ RN,M , are
right-equivalent if there exists an invertible matrix Q ∈ RN,N such that E2 = QE1 and
A2 = QA1. It is obvious that right-equivalent pencils have the same eigenvalues and
deflating subspaces, therefore if we are interested only in these quantities then we may
replace a matrix pencil with a different one in the same equivalence class. In other words,
eigenvalues and right deflating subspaces depend only on the column space of the matrix

U =
[
ET

AT

]
.
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Therefore, we may replace U with any other basis matrix of the same subspace, for
instance

Û =
[
ÊT

ÂT

]

as in (9), and thus replace sE −A with sÊ − Â.

4 Permuted graph bases of Lagrangian subspaces, symplectic
and Hamiltonian pencils

sec:LagrangianPGB
The theory of permuted graph bases presented in Section 3 has a structured analogue for
Lagrangian subspaces. Given a vector v ∈ {0, 1}N , we define the associated symplectic
swap matrix as

Πv ∈ R2N,2N :=
[
diag(1− vi) diag(vi)
−diag(vi) diag(1− vi)

]
.

These are, up to a sign swap, all the permutation matrices generated by transpositions
(i,N + i), including in particular the identity (vi = 0 for all i) and J2N (vi = 1 for all
i). We denote the set of all symplectic swap matrices in R2N,2N by SN . Note that the
elements of SN are symplectic and orthogonal.
Using symplectic swap matrices in place of the permutations, we can formulate a

version of Problem 1 for Lagrangian subspaces.
ProblemPGBL Problem 2 (Bounded Lagrangian graph basis). Given U ∈ R2N,N such that U = imU is

Lagrangian, and a threshold T ≥
√

2, find a symmetric matrix X = [xi,j ] ∈ RN,N , an
invertible matrix Y ∈ RN,N , and a symplectic swap matrix Πv such that

ΠvU =
[
I
X

]
Y, and |xi,j | ≤ T for all i, j.

It was shown in [30] that for any basis matrix U of a Lagrangian subspace, a solution
to Problem 2 exists. Furthermore, if T >

√
2, then such a solution can be computed in

O(N3 logT N) floating point operations.
The algorithm described in [30] is similar to the one for the unstructured case. In

particular, one starts by taking the Πv obtained from a special QRΠv factorization,
which is a variant of QRP factorization where one takes a symplectic swap matrix in
place of a permutation.
In other words, every Lagrangian subspace U admits a basis matrix of the form

Û = ΠT
v

[
I
X

]
, X = XT , |xi,j | ≤ T for all i, j.

The results of Theorem 5 hold in this case as well. While in the unstructured case an
orthogonal basis matrix is slightly better conditioned but has much less sparsity, there
is another clear advantage in the Lagrangian case because the Lagrangian property is
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equivalent to the symmetry of X, so it is very easy to enforce and preserve in finite
precision computations.

The matrix pencil version of this result gives bounded structure-preserving representa-
tions of regular Hamiltonian pencils. A matrix pencil sE − A, A,E ∈ R2n,2n is called
Hamiltonian, see e. g. [29], if EJ2nA

T +AJ2nE
T = 0 and it should be noted that this

property is invariant under right equivalence.

Theorem 6 ([30]). For every regular Hamiltonian pencil sE −A, A,E ∈ R2n×2n,

U =
[
ET

J2nA
T

]

is Lagrangian. Moreover, every regular Hamiltonian pencil has a right-equivalent pencil
sÊ − Â such that

Û =
[
ÊT

J2nÂ
T

]
(10) HamiltonianPGRPencil

is as in (9).

In particular, the columns of Ê and Â are, after multiplication with a symplectic swap
matrix, those of an identity matrix I2n and those of a bounded symmetric matrix.

5 Partial Lagrangian subspaces
sec:parlag

It is a non-trivial task to extend the results of the previous section to deal directly with
pencils of the form (7). One quickly realizes that the even structure is not invariant under
right equivalence as can be seen from the results in [24, 26] the Hamiltonian structure
is only contained in a subproblem. The work [35] uses so-called generalized Lagrangian
invariant subspaces for matrix pencils in the form (7), i. e., maximal neutral subspaces Ug
such that vTEu = 0 for all u, v ∈ Ug, where E is as in (7). With this approach, however,
it is not clear whether we can obtain results analogous to those in Section 6. Instead we
will work with a slightly different concept. We say that a subspace Up ⊆ R2N+M is partial
Lagrangian if it has dimension N +M and there exist L ∈ R2N×M and Le ∈ RM×M such
that with

Jp =
[
J2N L
−LT Le − LTe

]
, (11) defJe

we have uTJpv = 0 for all u, v ∈ Up. If Up ∈ R(2N+M)×(N+M) is a basis matrix for Up,
then this condition takes the form UTp JpUp = 0.
We have the following invariance property of partial Lagrangian subspaces.

Pie Lemma 7. Let Up ∈ R(2N+M)×(N+M) and suppose that imUp is partial Lagrangian. Let,
moreover, Π ∈ SN , Q ∈ RM,M , Πp = diag(Π,Q). Then, imΠpUp is partial Lagrangian
as well.
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Proof. Since Π ∈ SN , we have that

ΠT
p JpΠp =

[
ΠTJ2NΠ ΠTLQ
−QTLTΠ QT (Le − LTe )Q

]
=
[
J2N L̂

−L̂T L̂e − L̂Te

]

is still in the form (11).

Using Lemma 7 we can extend the result in Section 4 to partial Lagrangian subspaces.

th:pdj Theorem 8. Let

Up =

U1
U2
U3

 , U1, U2 ∈ RN,(N+M), U3 ∈ RM,(N+M) (12) Upartitioned

be the basis matrix of a partial Lagrangian subspace U = imU . Then,

1. There exists Π ∈ SN such that the last N +M rows of

diag(Π, IM )Up

form an invertible matrix.

2. For each T ≥
√

2, there exist a Π ∈ SN and a nonsingular Yp ∈ RN+M,N+M such
that

diag(Π, IM )Up =

X Xe

IN 0
0 IM

Yp, (13) Uext

with
X = [xi,j ] = XT , |xij | ≤ T. (14) Xbound

In other words, U admits a basis matrix of the form

diag(Π, IM )T
X Xe

IN 0
0 IM


with X satisfying (14).

Proof. Let

UT3 = Q

[
R

02N×M

]
, R ∈ RN×N

be a QR factorization of UT3 , and set

UpQ =
[
U Ue
0 RT

]
U ∈ R2N×N , Ue ∈ R2N×M .
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Note that R must be nonsingular, since otherwise Up would have dimension strictly
smaller than M +N .
The partial Lagrangian condition implies that imU is Lagrangian. Therefore, we

can find a symplectic swap matrix Πw such that the trailing N × N block of ΠwU is
nonsingular (Problem 2 tells us how to find such a ΠvU that has the leading N × N
block nonsingular. Then it is easy to see that taking wi = 1− vi for all i gives the desired
result). Therefore, the last M +N rows of diag(Πw, IM )Up form a nonsingular matrix,
as required.
Similarly, we can use Problem 2 to obtain Πw such that

ΠwU =
[
X
I

]
Y

with X satisfying (14). We can write

diag(Πw, IM )Up =

X Ze
I Ye
0 RT

[Y 0
0 I

]

for two suitable blocks Ze, Ye ∈ RN×M . Then it suffices to take

Yp =
[
I Ye
0 RT

]−1 [
Y 0
0 I

]
.

Note that the proof is constructive: given a threshold T >
√

2, we can compute the
QR factorization of UT3 and the solution of Problem 2 using the algorithm in [30], and
obtain an explicit representation of the form (13).

6 Partial Hamiltonian pencils and extraction of Hamiltonian
subpencils

sec:parham
In this section we use the ideas of the previous section to derive a method for the
extraction of Hamiltonian subpencils of even pencils.
Let

sE − A = s

[
Ẽ 0
F̃ 0

]
−
[
Ã B̃

C̃ R̃

]
, (15) funnyForm

with Ẽ, Ã ∈ RN,N , B̃, C̃T , F̃ T ∈ RN,M , R̃ ∈ RM,M , be a matrix pencil with M zero
columns as in (7). We say that sE − A is partial Hamiltonian if N = 2n and

Up := imUp = im
[
Ẽ ÃJN B̃

F̃ C̃JN R̃

]T
(16) partlyLagrangianU

is partial Lagrangian.
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Note that eigenvalues and right eigenvectors of a partial Hamiltonian pencil are well-
defined up to pre-multiplication by a nonsingular matrix, and thus they depend on the
subspace Up only (rather than on Up). In particular, it is always possible to reduce to the
case B̃ = 0 by pre-multiplying with a suitable matrix. Therefore, a partial Hamiltonian
matrix pencil is always equivalent to one of the form

sME −MA = s

[
Ê 0
F̂ 0

]
−
[
Â 0
Ĉ R̂

]
, (17) triangularPencil

with R̂ having full column rank. Multiplying out the leading N ×N block of UTp JpUp = 0
yields ÊJN ÂT + ÂJN ÊT = 0, so the partial pencil sÊ − Â is Hamiltonian.

Since the pencil (17) is block triangular, this shows that partial Hamiltonian pencils
have the eigenvalue ∞ with multiplicity at least M , the remaining eigenvalues have
Hamiltonian eigensymmetry, and they can be associated to invariant subspaces of the
form

im

Z1 0
Z2 0
0 I

 ,
where

im
[
Z1
Z2

]
are invariant subspaces of the Hamiltonian sub-pencil sÊ − Â.
The following results shows that even pencils in the form (7) are partial Hamiltonian.

thmSpecialEvenPencilsArePartlyHamiltonian Theorem 9. Let sE−A be a pencil as in (15) with Ẽ = JN , Ã = ÃT , C̃ = B̃T , R̃ = R̃T ,
F̃ = 0. Assume that E and A have no common left or right nullspace. Then, sE − A is
partial Hamiltonian.

Proof. Due to the fact that E and A have no common left or right nullspace, there exist
matrices L1, L2, Le such that[

JN ÃJN B̃

0 B̃TJN R̃

]L1
L2
Le

 =
[

0
IM

]
,

and it follows that[
JN ÃJN B̃

0 B̃TJN R̃

] 0 IN 0
−IN 0 0

0 0 0

[JN ÃJN B̃

0 B̃TJN R̃

]T
=
[

0 B̃

−B̃T 0

]
,

[
JN ÃJN B̃

0 B̃TJN R̃

] 0 0 L1
0 0 L2
−LT1 −LT2 Le − LTe

[JN ÃJN B̃

0 B̃TJN R̃

]T

=
[
0 0 0
0 0 Im

] [
JN ÃJN B̃

0 B̃TJN R̃

]T
−
[
JN ÃJN B̃

0 B̃TJN R̃

]0 0
0 0
0 Im

 =
[

0 −B̃
B̃T 0

]
.
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Hence, sE − A is partial Hamiltonian with Le as given and L =
[
L1
L2

]
.

This results allows to construct a procedure to obtain a Hamiltonian pencil in the form
(10) from every even pencil satisfying the hypotheses of Theorem 9. One first computes
a permuted graph basis matrix Û for the partial Lagrangian subspace (16), which exists
because of Theorem 8. The associated pencil is now in the form (17), so we can restrict
the invariant subspace computations to the pencil sÊ − Â.

noinverse Remark 1. An important observation is that in this extraction procedure we neither
need an inversion of the matrix R, nor the computation of its kernel. Since even pencils
with infinite eigenvalues in the form of Theorem 9 arise frequently in optimal control
problems [26, 29, 23], several techniques have been developed to deflate the unwanted
invariant subspace at infinity and reduce the problem to Hamiltonian matrices or pencils
[11, 29, 37]. However, all these techniques use either orthogonal transformations to
staircase form followed by an inversion of the matrix associated with the index one part
of the eigenvalues at ∞ or destroy the even structure to return to a subpencil having
only finite eigenvalues. When R has small singular values, then a difficult numerical rank
decision is needed. Here, we have shown that neither determining the kernel of R, nor
the Kronecker structure of an even pencil, is necessary to perform this extraction of the
Hamiltonian subpencil, and thus ill-conditioning in the former problem should not affect
the latter. Difficulties, however, may arise if sE − A is close to a singular pencil.

7 Inverse-free sign method with permuted graph bases
sec:inversefree

In the previous section we have shown how to reduce the problem of computing the
semi-stable subspace of an even pencil to the computation of the stable Lagrangian
subspace of a Hamiltonian pencil, we need an algorithm to do this robustly. Our first
attempt was to follow the approach in [30] and extend the algorithm described there, a
doubling algorithm implemented with permuted graph bases. However, when applying
this concept to the benchmark examples of [6], in some of the difficult examples this
algorithmic idea failed to compute reliably the smallest singular values of the matrix Y(γ)
in (5). Better results can be obtained with an algorithm which is rooted in the same ideas,
but differs slightly from the doubling approach by switching the inner iteration from
doubling to the inverse-free sign method. We describe this method and our modifications
in this section.

We recall that, for any square matrixM without imaginary eigenvalues and with Jordan
form M = WJW−1, the matrix sign function [22] is defined as sgnM = WDW−1, where
D is the diagonal matrix obtained from J by replacing a block Jλi

of size ki and eigenvalue
λi with sgnλiIki

. The matrix sign function can be obtained as the limit of the iteration

Mk+1 = 1
2(µkMk + µ−1

k M−1
k ), (18) ordinarynms

for any suitable choice of the scaling parameters µk > 0. The stable invariant subspace
of Mk can then obtained as ker(sgn(M) + I) and the unstable one as ker(sgn(M)− I).

13



The general inverse-free sign method [3] proceeds as follows. Given a regular matrix
pencil sEk −Ak, Ek, Ak ∈ RN,N , determine Ck, Sk ∈ RN,N such that CkAk = SkEk and
rank

[
Ck Sk

]
= N , and then set

sEk+1 −Ak+1 = sSkEk −
1
2
(
µkSkAk + µ−1

k CkEk
)
, (19) nms

where µk is a suitably-chosen scaling factor that can be tuned to achieve numerical
stability and to improve the convergence speed. One can see that the iteration (19) is
algebraically equivalent to (18), whenever E0 and A0 are nonsingular. On the other hand,
it is typically more stable and reliable when they are ill-conditioned, and it works even
when these matrices are singular. The convergence of the method is characterized in the
following result.

Theorem 10 ([3]). When started from a regular pencil sE0−A0 without purely imaginary
or infinite eigenvalues, the iteration (19) E−1

k Ak converges quadratically to sgnE−1
0 A0.

For the iteration (19) to perform stably, a crucial point is the selection of the factors Ck
and Sk. The usual choice in the general case, [1, 3, 28], is to compute a QR factorization[

Rk
0

]
=
[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

] [
Ak
Ek

]
(20) QRSign

and to choose Ck = Q
(k)
21 , Sk = −Q(k)

22 . We suggest a different approach based on the
results described in Section 3. Namely, for a given tolerance T > 0 we compute Π,
X = [xi,j ] with |xi,j | ≤ T , as well as

Û = Π

[
I
X

]
such that

[
Ak
Ek

]
= U = ÛY, (21) CS1

with Y nonsingular, and then choose[
Ck −Sk

]
=
[
−X I

]
ΠT . (22) CS2

Using these settings, it is simple to check that
[
Ck −Sk

] [Ak
Ek

]
= 0 and the resulting Ck

and Sk have their elements bounded in modulus by T . Again, as mentioned before, this
is a compromise between orthogonality and sparsity of the subspace representation.

Since the computation of X is based on a QR decomposition with column pivoting, it
may not be obvious where this approach differs from the classical sign-function iteration
exactly. The following remarks discuss this point.

• In (20), the QR factorization of U ∈ R2N,N is needed and the Q factor has dimension
2N × 2N . In the solution of Problem 1, the QR factorization of UT is needed
instead, with a Q factor of dimension N ×N .
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• Moreover, in Problem 1, we do not need the factor Q, but rather only the rectangular
factor R. Therefore, the flop count for the factorization is of order 10

3 N
3 compared

with 38
3 N

3 (using the flop counts in [22, Appendix C]).
If the starting pencil sE0 −A0 (respectively the starting matrix M0) is Hamiltonian,

then each sEk −Ak in (19) (resp. Mk in (18)) is Hamiltonian as well. Thus, in addition,
following the ideas in [30] for the doubling algorithm, after each step of the iteration we
may use the solution of Problem 2 to transform the resulting pencil in the structured
form (10). The resulting algorithm is as follows.

Algorithm 1: Inverse-free matrix sign method with permuted graph bases
ifs

Input: A regular 2n× 2n Hamiltonian pencil sE0 −A0 that has no purely
imaginary eigenvalues

Output: Bases Vs, Vu for its stable and unstable invariant subspaces
1 for k = 0, 1, 2, . . . , nSteps, while a stopping criterion is not satisfied do
2 Compute Êk, Âk as in (10) (with an additional subscript k for all the matrices)

by solving Problem (2);

3 Compute Û = Π

[
I
X

]
such that

[
Âk
Êk

]
= ÛY , by solving Problem (1);

4 Set
[
Ck −Sk

]
=
[
−X I

]
ΠT , so that CkAk = SkEk; products1

5 Compute sEk+1 −Ak+1 = sSkÊk − 1
2

(
µkSkÂk + µ−1

k CkÊk
)
;

6 end
7 Compute an SVD AnSteps − EnSteps = USV T . Set Vs to be the last n columns of V ;Cay1
8 Compute an SVD AnSteps + EnSteps = USV T . Set Vu to be the last n columns of V ;Cay2

As a stopping criterion, we can use the distance between two consecutive iterates
‖Êk+1 − Êk‖+ ‖Âk+1 − Âk‖.

8 The complete γ-iteration
sec:gammait

Based on the described inverse free sign function iteration combined with a permuted
Lagrangian graph representation of the space, we have implemented a version of the
γ-iteration [6, 19, 40]. This iteration is a one-parameter optimization procedure based
on bisection and the secant method to compute the optimal value γopt, based on the fact
that Theorem 1 gives a criterion to check if a given value γ is larger or smaller than γopt.
• The first condition in Theorem 1 is checked by solving a generalized eigenvalue
problem; it does not depend on the tested value γ, so this computation can be
made once before starting the iteration.

• The second condition in Theorem 1 is checked by computing the invariant subspace
of (7) using Algorithm 1. Here we take the simple approach of declaring that
there is no solution if the algorithm does not converge after a sufficient number of
iterations.
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Example Our results Results from [6] Results hinfopt (from [6])

[6, Ex. 6.1],

a = 1: RelErr = 5 · 10−14;
a = 10−8: RelErr = 5 · 10−14;
a = 10−10: RelErr = 5 · 10−14;
a = 10−12: RelErr = 1 · 10−13;
a = 10−14: RelErr = 2 · 10−8;

13 correct digits up to a =
10−7; fails for a = 10−8

and below

a = 1: RelErr = 2 · 10−14;
a = 10−8: RelErr = 6 · 10−14;
a = 10−10: RelErr = 9 · 10−14;
a = 10−12: RelErr = 1 · 10−9;
a = 10−14: RelErr = 9 · 10−7;

[6, Ex. 6.2] RelErr = 1 · 10−11 13 correct digits fails

[6, Ex. 6.3] no exact value available; the two methods agree to 13 digits fails

[6, Ex. 6.4],
α = 3

RelErr = 6 · 10−13 13 correct digits RelErr = 4 · 10−15

Table 1: Results for the examples in [6] with required tolerance ε = 10−14 in the γ-
iteration.

Results

• The third condition in Theorem 1 is checked with the help of Theorem 3, which
converts it into computing the inertia of the symmetric matrix Y(γ). To this purpose,
it is crucial that the computed Y(γ) from the Lagrangian invariant subspaces has
some accuracy in its smallest eigenvalues, which is not an easy property to ensure
in the neighborhood of γopt.

In the following numerical examples, for simplicity we have used the scaling factor µk = 1.
Using more sophisticated scaling strategies did not yield a significant advantage.

We implemented the method using Matlab R2011a, and compared it with the method
described in [6] and with hinfopt from the Robust Control Toolbox, testing it on the
same test problems as in [6]. The results are displayed in Table 1.

The most demanding problem in the set of test cases is Example 6.1. It is a parametric
problem in which some of the eigenvalues are of the order of unity and some are of the
order of a. When a is small, a very accurate numerical method is needed in order to
deal properly with the small eigenvalues. The results show that our method can overall
obtain results that are on par with or better than the other existing methods.
The code used for these experiments is published online [33]. It consists of a full set

of Matlab functions to work with permuted graph bases of matrices and pencils, both
structured (Lagrangian, symplectic, Hamiltonian) and unstructured, an implementation
of doubling and of the inverse-free sign algorithm, and routines to solve CAREs, compute
invariant subspaces of Hamiltonian pencils and even pencils in the form (7), and for the
γ-iteration. The code is not optimized for time and high-performance computing, but
rather aimed to researchers who wish to change the parameters and test new iterations.

9 The drawbacks of doubling
sec:baddouble

It is interesting to discuss briefly what happens if we use the doubling method described
in [30] instead of Algorithm 1 to compute the Lagrangian invariant subspaces of the
Hamiltonian pencil. In Example 6.1, we get full precision for a = 1 and a = 10−1, but
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already for a = 10−2 the γ-iteration fails to converge due to the inaccuracy of the small
eigenvalues associated with the computed subspaces. This is surprising, since the two
methods are quite similar. Indeed, we briefly present here the doubling algorithm, as
Algorithm 2, in a fashion that underlines its similarities with the inverse-free sign method.
Doubling and inverse-free sign are essentially the same iteration, once carried out in

Algorithm 2: Inverse-free doubling method with permuted graph bases
doubling

Input: A 2n× 2n Hamiltonian pencil sE0−A0 without purely imaginary eigenvalues
Output: Bases Vs, Vu for its stable and unstable invariant subspaces

1 For a suitable α > 0, compute M0 = A0 + αE0, N0 = A0 − αE0 (Cayley transform);cayley
2 for k = 0, 1, 2, . . . , nSteps, while a stopping criterion is not satisfied do
3 Compute a special equivalent pencil sM̂k − N̂k using a symplectic variant of (10),

by solving an instance of Problem (2);rightEq

4 Compute Û = Π

[
I
X

]
such that

[
M̂k

N̂k

]
= ÛY , by solving an instance of

Problem (1);
5 Set

[
Ck −Sk

]
=
[
−X I

]
ΠT , so that CkMk = SkNk; products2

6 Compute sMk+1 −Nk+1 = sSkM̂k − CkN̂k;
7 end
8 Compute an SVD NnSteps = USV T . Set Vs to be the last n columns of V ;
9 Compute an SVD MnSteps = USV T . Set Vu to be the last n columns of V ;

the Hamiltonian setting and once in the symplectic setting after a Cayley transform
(Line 1 of Algorithm 2). The final accuracy obtained with doubling depends also on
the parameter α of this Cayley transform; while some heuristic strategies exist for its
choice [13, 30, 34], none of them is completely satisfactory. Although good results in the
subspace residual metric are attainable with doubling [30], it seems that this accuracy
does not transfer completely to the more fragile accuracy of the small eigenvalues of
Y(γ), thus rendering doubling inadequate for our problem.
It is instructive to see where exactly the accuracy is lost when applying Algorithm 2

to Example 6.1. First of all, we point out that the normwise backward error does not
highlight any difference between the two methods, as the subspaces Ud and Us computed
by the doubling and inverse-free sign method, respectively, are both exact invariant
subspaces of pencils that are within distance ≈ 10−15 from the real one sE0 − A0.
Nevertheless, using Us, the smallest eigenvalues of Y(γ) are accurate, while using Ud they
are perturbed by ≈ 10−9. The pencil is indeed ill-conditioned, and perturbations of order
≈ 10−15 can result in a variation of magnitude ≈ 10−8 of the invariant subspace.
Therefore, we used Matlab’s variable precision arithmetic functions to compute the

exact invariant subspaces of the pencils with high precision, to check where the loss
of accuracy takes place. Our first thought was that the Cayley transform (Line 1 of
Algorithm 2) was to blame. However, the exact invariant subspace of sM0 −N0 is at
distance ≈ 10−15 from that of sE0 −A0, so this step is safe. The loss of accuracy takes
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place immediately after, Line 3 in the first iteration of the “for” cycle, that is, when
we compute a right-equivalent pencil in permuted graph form. Indeed, the invariant
subspace of this pencil lies at distance ≈ 10−9 from the original one. The permuted graph
representation is not to blame here, however, because using an orthogonal representation
(i.e., pre-multiplying by a M that makes

[
M0 N0

]T
orthogonal) results in an error of

the same order.
This phenomenon does not happen in Algorithm 1. When we compute Ê0, Â0 in either

a permuted graph or an orthogonal representation of sE0 − A0, the stable invariant
subspace is perturbed by ≈ 10−15 only. So it seems that, while the Cayley transform
per se does not immediately cause inaccuracy, it returns a pencil that is more “fragile”
with respect to small perturbations, and accuracy is lost as soon as we proceed with the
algorithm and multiply it by a nonsingular matrix from the left.
As mentioned before, all these phenomena could be completely explained only by an

entrywise perturbation analysis, however, such a perturbation analysis for doubling-type
algorithms is an open problem.
Remark 2. Note that there is also a Cayley transform hidden in Algorithm 1 as well. It
is in Lines 7 to 8, where we switch to AnSteps ± EnSteps to compute the final subspaces.
However, this is performed only after convergence has been reached. While a Cayley
transform on the original pencil is dangerous, since eigenvalues close to the imaginary axis
could be perturbed from the stable part of the spectrum to the unstable one or vice versa,
at the end of the algorithm the converged pencil sEnSteps −AnSteps has eigenvalues only
in 1 and −1. Therefore, we expect the two subspaces to be reasonably well separated,
and the Cayley transform to be less problematic.
Remark 3. There is another subtle difference between the two algorithms. In Line 4 of
Algorithm 1 three matrix products are needed, while in doubling two products in Line 5
suffice. A natural question is whether there is a way to rearrange the computations
in order to get rid of one of those products. It is easy to come up with the identity
(µS + C)(Â+ µ−1Ê)− CÂ− ŜE = µSÂ+ µ−1CÊ, which reduces the formulas to two
products only, since CÂ = SÊ. However, as in the Cayley transform, we would be
working with linear combinations of Â and Ê instead of the two matrices themselves,
and this reformulation may be less stable.

10 Conclusions
The numerically robust solution of the optimal H∞ control problem is difficult in finite
precision arithmetic, because in the neighborhood of the optimal γopt the necessary com-
putational steps in the γ iteration may be very inaccurate if the structure of the problem
is not exploited properly. To this purpose, usually either unstructured algorithms such as
the QZ-algorithm (in hinfopt) or direct algorithms based on orthogonal transformations
(in [6]) are used. In this paper, we show that inverse-free iterative algorithms can be used
with comparable or better accuracy. To apply them satisfactorily to this problem, we
develop a deflation procedure which relies neither on the nonsingularity of sE −A nor on
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successive rank deflations. Another interesting observation is that there is a subtle but
crucial difference between the doubling algorithm and the inverse-free sign algorithm,
which is not easy to detect using residual computations. A premature Cayley transform
may lead to large inaccuracies.
Another useful byproduct of this paper is the code released online [33], which can be

useful to researchers working in this area as a quick way to test the algorithms, modify
them or compare them with other solutions.
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